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Kinetics of domain growth in systems with local barriers
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We study domain growth in spin-1 lattice models having nonconserved spin-flip kinetics with local barriers.
Our primary motivation is to model the relaxational behavior of physical systems in which molecular motion
is impeded by local kinetic barriers. The kinetic constraint is such that a spin from an up~down! state can flip
to a down~up! state only via the zero state, which has a higher energy. We examine how the usual curvature-
driven domain growth is affected by these local barriers, and whether the single-spin barriers have a collective
effect. This paper presents comprehensive numerical results for phase ordering dynamics in this model using
Monte Carlo simulations. We demonstrate dynamical scaling for domain-size distribution functions and spatial
correlation functions. We also present results for the time dependence of characteristic length scales and
autocorrelation functions. The length-scale behavior is interpreted in terms of the random walk of steps on
domain boundaries. Furthermore, we present a simple stochastic model to derive an analytic expression for the
autocorrelation function, which exhibits a stretched-exponential behavior over an extended regime—in agree-
ment with our numerical simulations.

DOI: 10.1103/PhysRevE.63.046115 PACS number~s!: 64.60.2i
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I. INTRODUCTION

There has been much interest in the temporal behavio
systems approaching equilibrium. Systems that have b
quenched from a disordered phase to an ordered phase d
order instantaneously. Typically, the length scale of orde
regions grows with time as the different ordered phases c
pete to select an equilibrium state. The process whereby
system orders is referred to as ‘‘phase ordering’’~or ‘‘do-
main growth’’ or ‘‘coarsening’’!, and has now been studie
extensively@1#. Perhaps the most relevant feature of pha
ordering systems is that the time-dependent evolution su
quent to the quench usually exhibits a dynamical-sca
property@2,1#. Thus, the spatial correlation functionC(rW,t)
5^s(RW ,t)s(RW 1rW,t)&, wheres(rW,t) is the appropriate orde
parameter~OP! at pointrW and timet after the quench, has th
scaling form

C~rW,t !5gS r

L~ t ! D . ~1!

In physical terms, Eq.~1! reflects the fact that the mor
phology of the coarsening system, described byg(x), is un-
changed in time, but the scale of the morphology grows
L(t). For pure and isotropic systems with a scalar OP,
growth of L(t) depends on whether or not the OP is co
served by the system dynamics. For the case with nonc
served OP~NCOP!, we haveL(t);t1/2, which is referred to
as the Allen-Cahn~AC! growth law. On the other hand, fo
the case with conserved OP~COP! and no hydrodynamic
effects, we haveL(t);t1/3, referred to as the Lifshitz-
Slyozov growth law@1#. For randomly disordered system
that contain quenched impurities, the domain walls can
trapped and the growth ofL(t) becomes much slower, ofte
exhibiting logarithmic time dependencies@3–5#. Recent in-
terest has also focused upon logarithmically slow dynam
in systems without quenched disorder. An interesting w
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in this context is due to Shoreet al. @6#, who formulated
arguments for slow domain growth in Ising models wi
competing interactions but no quenched disorder.

An alternative tool to characterize nonequilibrium~or
equilibrium! systems is the autocorrelation function:

F~ t0 ,t !5^s~rW,t0!s~rW,t01t !&2^s~rW,t0!&^s~rW,t01t !&,
~2!

which explicitly depends on both times (t0 andt) in the case
of nonequilibrium systems. This quantity has been ext
sively studied in the context of glassy dynamics, where i
known to exhibit a stretched-exponential form@7–11#. Much
effort has focused on understanding this slow dynamics, p
ticularly in the context of systems without quenched dis
der, e.g., structural glasses. Some analytical studies have
argued for similar stretched-exponential behavior ofF(t0 ,t)
in equilibrium fluctuations of ordered ferromagnets@12,13#.
However, these arguments have not been supported by
Monte Carlo~MC! simulations of Graham and Grant@14#.

This paper focuses on the phase ordering dynamics
special case of the spin-1 Blume-Emery-Griffiths~BEG!
model@15#. The feature of the dynamics we study here is t
introduction of local barriers to single spin-flip kinetics. Th
static properties of the BEG model have been extensiv
investigated@15–20#, but there has been only limited stud
of its nonequilibrium properties. This paper presents deta
MC results for both spatial correlation and autocorrelat
functions for the far-from-equilibrium dynamics of the BE
model.

Let us conclude this section by providing a broad ov
view of this paper. There are two primary goals of our pap
First, we wish to examine the manner in which local kine
barriers affect growth kinetics and domain morphology, i.
we investigate the validity of dynamical scaling in the co
text of a larger class of models. Second, we want to obtain
analytical understanding of autocorrelation functions in th
models. This paper is organized as follows. Section II p
©2001 The American Physical Society15-1
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vides background material on domain growth, in the cont
of which our subsequent results will be interpreted. In S
III, we describe our model and provide a brief review of
static properties. In Sec. IV, we present and discuss our
merical results for ~a! spatial correlation functions,~b!
domain-size distribution functions, and~c! characteristic
length scales. In Sec. V, we present our numerical results
the autocorrelation function and describe a simple stocha
model that mimics the evolution. Finally, Sec. VI conclud
this paper with a brief summary of our results and so
issues for future consideration.

II. CLASSES OF DOMAIN GROWTH IN SYSTEMS
WITH NONCONSERVED ORDER PARAMETER

The phase ordering system evolves from an initial n
equilibrium configuration towards a final state by goi
through a number of intermediate configurations. The evo
tion of the system from one state to another can be un
stood in terms of paths in state space. The probability a
ciated with a particular path is given by the usual statisti
weight of intervening configurations, which is largely dete
mined by the highest-energy configuration encounte
along that path. At low temperatures, paths which encou
lowest-energy barriers will clearly dominate. At higher tem
peratures, the entropic factor arising from a multiplicity
paths should also be accounted for. Therefore, the evolu
problem is equivalent to one of diffusion in a high
dimensional configuration space with a complex ene
landscape.~Of course, we should stress that a better desc
tion would be in terms of the evolution of an ensemble
initial states to another ensemble of final states.!

Let as elucidate this point with a well-known examp
i.e., the spin-1/2 ferromagnetic nearest-neighbor Ising mo
in dimensiond52 with zero-magnetic field. Let this system
be quenched from a disordered initial state to a tempera
T below its critical temperatureTc . Typically, the initial
state has equal numbers of up and down spins, which
randomly distributed through the lattice. The system sta
ordering locally, and soon develops a number of up a
down domains, competing with each other to grow. As ti
goes on, the number of domains decreases due to grow
size of the remaining domains. To understand this coars
ing, it is instructive to consider shrinking of a single squa
domain of sideL. If we take the strength of the neares
neighbor interaction to beJ, the energy cost to flip a spin
inside a domain is 8J. On the boundary, this cost is 4J,
while it is 0 at the corners of the domain. Since a corner s
can be flipped without energy cost, the most probable p
for domain shrinking begins with flipping of one of the co
ner spins, which creates two corners on the edges. This fl
followed by a random walk of the corner along an edge, e
step of which has no energy cost. Thus, an edge of sizeL is
eliminated in a time proportional toL2. As a matter of fact,
this time can be calculated quite accurately if one conside
one-dimensional random walk with probabilityp to jump
right or left; and probabilityq of not jumping. The resultan
expression for the first-passage probability of covering a
04611
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tanceL in t steps is a generalization of a formula due
Lagrange@21# :

P~L,t !512
2

2L21 (
k50

L21
cos2 fk

sinfk
$12@q12p cos~2fk!#

t%,

~3!

where fk5p(2k11)/(4L22). The first-passage time~up
to a prefactor! is obtained by settingP(L,t) to a fixed value.
This yields at;L2 behavior even at rather small values ofL,
as we have ascertained by explicit calculation.

In the general situation, the above considerations imp
coarsening length scaleL(t);t1/2, providing an equivalent
way of interpreting curvature-driven growth in the context
discrete lattice models@6#. Furthermore, since no energy ba
rier occurs on this path~i.e., corner performing random wal
on an edge!, such coarsening obviously occurs even atT
50.

An important step towards a broader understanding of
main growth laws is due to Laiet al. @22# ~LMV !, who pro-
vided a classification of domain-coarsening laws for nonc
served systems. They proposed four different classes
systems, determined by the dependence of the energy ba
to coarsening on the characteristic domain length. This c
sification is best understood by considering the equation
curvature-driven growth@1#:

dL~ t !

dt
5

a~L,T!

L~ t !
, ~4!

where the functiona(L,T) is the diffusion coefficient, which
depends on length scale and temperature, in general. Fol
ing the discussion of Shoreet al. @6#, the LMV classification
can be stated in terms of the behavior ofa(L,T).

~a! Class 1systems are those for whicha(L,T) is inde-
pendent ofL and remains nonzero asT→0. In these systems
there exist relaxation paths that have no energy barrier
the nature of relaxation does not depend on the coarse
length scale. The Ising model discussed above clearly
longs to this class. In general,L(t);t1/2 for this class of
systems.

~b! Class 2systems are those where the minimum ene
barriers are again independent ofL, but the elementary dif-
fusion process~e.g., a corner moving along an edge! has an
energy barrierEB , so that a(L,T)5a0 exp(2EB /T) (kB
51). In this case, we again obtain at1/2-law, but with a time
scalet5t0 exp(EB /T). It is evident from the above equatio
that domain growth will be slow for this class of system
with L(t) constant for timest!t, while for large times the
growth law isL(t);(t/t)1/2.

~c! For Class 3systems, the activation energy grows li
early with L. An example of this is a system with quenche
impurities that trap the domain walls with a fixed energy~say
e) per unit length. In that case, we have a short-time grow
law L(t);t1/2, which crosses over to a logarithmic grow
law at late times, namely,L(t);Te21ln(t/t) with t
5LcT/(a0e), Lc being a crossover length scale.

~d! Finally, Class 4systems are those for which the e
ergy barriers grow asLm, wheremÞ1. This situation also
5-2
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arises in the context of systems with quenched disorder@3#.
Again, the short-time growth law isL(t);t1/2, which crosses
over to a ‘‘logarithmic’’ growth law, namely, L(t)
;(Te21)1/m@ ln(t/t)#1/m with t5Lc

22mT/(ma0e), Lc being a
crossover length scale.

The general classification described above will prove u
ful in our subsequent discussion of domain growth in s
tems with local kinetic barriers.

III. DETAILS OF MODELING

A. Brief review of static properties

The BEG model is a spin-1 Ising model with two ord
parameters, i.e., the dipole and quadrupole moments,
was initially proposed to study phase separation and su
fluid ordering in 3He-4He mixtures@15#. Its subsequent ap
plications include condensation and phase separation in
nary and ternary fluids @16#, microemulsions @17#,
semiconducting alloys@18#, etc. The BEG model exhibits
rich phase diagram, which has been extensively explored
a variety of techniques@19,20#.

In its most general form, the BEG Hamiltonian can
written as follows:

H52J(̂
i j &

sisj2K(̂
i j &

si
2sj

22
M

2 (̂
i j &

~si
2sj1sisj

2!

2h(
i

si2D(
i

si
2 , si561,0, ~5!

where the angular brackets refer to a sum over near
neighbor pairs, J(.0) is the ferromagnetic exchange
interaction strength; K is the quadrupole exchange
interaction strength,h is an external magnetic field, andD is
the anisotropy field. In the present exposition, we focus
the case withM5h50. Furthermore, our dynamical simu
lations are in the parameter rangeK,D>0.

For our study of far-from-equilibrium dynamics, onl
broad features of the phase diagram are relevant. Toward
end, it is instructive to examine the nature of the ground s
at T50. There are three possible states—two with equal
ergy (si561 ; i ), and the statesi50 ; i . The energy of the
two equivalent states isE6152 1

2 N(qJ1qK12D), while
that of si50 is E050. Therefore, the ground state is par
magnetic if (qJ1qK12D),0 and ferromagnetic other
wise, and a first-order transition occurs atD52(qJ
1qK)/2. ForT.0 but small, we expect a similar first-orde
transition by continuity arguments.

For arbitraryT, we invoke the mean-field~MF! approxi-
mation, where it is straightforward to obtain self-consiste
equations for the two order parameters,^si&[m and ^si

2&
[r. These equations have the form

m5
2 sinh~bqJm!

exp@2b~qKr1D!#12 cosh~bqJm!
, ~6!

r5
2 cosh~bqJm!

exp@2b~qKr1D!#12 cosh~bqJm!
.
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In Eq. ~6!, q is the coordination number andb51/T with
kB51. The model reduces to the spin-1 Ising model in t
absence of quadrupole and anisotropy terms (K5D50).
This exhibits a second-order paramagnetic-ferromagn
transition atTc52q/3, where we measure quantities in un
of J, i.e., J51. Let us now individually examine the case
K50 andD50.

~i! K50 case. The pointD52q/2 corresponds to a first
order transition. AsT increases, the transition continues to
first order until a temperatureTt5q/3 is reached. The line o
first-order transitions terminates at the tricritical poi
(Tt ,D t), where D t52(q/3)ln(4). Beyond this point, the
transition is continuous. The relevant MF phase diagram
shown in Fig. 1, and is well-known in the literature@15,19#.
Most of our dynamical simulations are in the context of th
phase diagram—we consider quenches from a hi
temperature disordered phase to the hatched region of
phase diagram. The results presented here forK50 are
quantitatively similar~except for prefactors! to those ob-
tained forK.0, which is the region of interest to us.

~ii ! D50 case. In this case, the first-order transition o
curs atK521. As T increases, we have similar behavior
in the K50 case, i.e., the transition continues to be fi
order until a tricritical point is reached. Beyond this poin
the transition becomes second order. The detailed MF ph
diagram has been explored extensively in Ref.@19#.

FIG. 1. MF phase diagram of thed52 BEG model in the (T,D)
plane whenK,M ,h50. Parameters are measured in units ofJ, i.e.,
J51. A line of first-order transitions~dashed line! terminates at the
tricritical point (Tt ,D t), and continues on as a line of second-ord
transitions ~solid line!. The equation of the solid line is 8b
5exp(bD)12, whereb51/T (kB51). Important points marked on

the phase diagram are~a! the tricritical point, (Tt ,D t)5( 4
3 ,

2
4
3 ln 4), and ~b! the critical point of the spin-1 Ising model

(Tc ,Dc)5( 8
3 ,0). Our dynamical simulations correspond t

quenches fromT5` to the hatched region of the phase diagram
5-3
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B. Dynamical version of model

We are interested in investigating the far-from
equilibrium evolution of the BEG model with kinetic con
straints. The spin-1 model has no intrinsic dynamical evo
tion. We introduce stochastic kinetics by placing the syst
in contact with a heat bath. In this paper, we have used
simulations to study the BEG model with Glauber spin-fl
kinetics on ad52 square lattice. We imposed a kinetic co
straint such that transitions from61→71 were forbidden,
i.e., only transitions from61→0 and 0→61 were permit-
ted. Typically, such a kinetic constraint would arise from
selection rule ~e.g., quantum-mechanical! governing spin
transitions, e.g.,ds561. In this paper, we consider physic
situations in whichg5bD is positive and large, so that ther
is a strong local barrier for the two-step transition61→0
→71. This mimics a continuous degree of freedom th
encounters a barrier while going from one low-energy c
figuration to another. We would like to understand the i
plications of this local barrier for phase ordering dynamics
this system.

Before we proceed to describe results, let us brie
present details of our numerical simulation techniques.
have conducted MC simulations of our model withK,D>0
on lattices of sizeN2, with periodic boundary conditions in
both directions. Subsequently, we present results forK50
alone, as these are quantitatively similar to results obtai
for K.0. All parameters are measured in units ofJ, i.e., J
51. We have done simulations with both synchronous a
sequential updating, with equivalent results. The results
sented in this paper correspond to the case of synchro
updates. The initial condition for a run generally consisted
a random distribution of equal numbers
11,0,21—corresponding to a high-temperature disorde
configuration. At timet50, the system was quenched in
the hatched region of the phase diagram in Fig. 1, where
equilibrium state is ferromagnetic. All statistical data pr
sented subsequently is obtained from 5 independent
with lattice sizesN5512, except where stated otherwise.
we demonstrate later, this proved sufficient to obtain hi
quality numerical data.

IV. DOMAIN GROWTH AND PATTERN MORPHOLOGY

A. Shrinking of a square droplet

Let us initiate our study of phase ordering in thisd52
system by examining a simple situation, i.e., we conside
square droplet of~say! 11 in a background of21. As dis-
cussed by Shoreet al. @6#, a careful analysis of this situatio
clarifies the nature of barriers to the domain growth proce
i.e., whether or not the barriers depend upon the length sc

In this context, a bulk spin-flip~i.e., 11→0) has an en-
ergy cost of (414K1D). For a boundary~other than cor-
ner! spin, the cost is (214K1D), and for a corner spin, the
cost is (4K1D). Hence, there is always a barrier to evol
tion when (4K1D).0, and the most probable evolutio
path in configuration space starts by flipping the corner s
After the corner spin flips, new corner spins are created
these also have to cross the same energy barrier as
04611
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predecessor. This process continues until the last spin in
droplet has been flipped. Therefore, the optimal path
shrinking a square requires surmounting energy barriers
height EB54K1D. An increase inL, the square size, in
creases the number of sites to be flipped but the energy
rier is still the same. This corresponds to a Class 2 system
the LMV classification scheme, discussed in Sec. II.

Figure 2 shows MC results for the time to shrink a squ
droplet (ts) in d52, whenK50. We present data forts vs
g(5bD) on a linear-log plot—activation over a constan
energy barrier should yield a straight line with unit slop
i.e., ts5t0 exp(g). This is seen to be the case for large va
ues ofg in Fig. 2, confirming that there is a constant~rather
than length-scale dependent@6#! energy barrier to drople
shrinking.

We can obtain a quantitative estimate of the dropl
shrinking time by using the expression in Eq.~3!. At low T,
the shrinking process proceeds by the successive remov
layers through the random walk of steps. The shrinking ti
is obtained as the sum of first-passage times for rand
walks of sizeL, (L21), etc. We are presently investigatin
this problem in some detail, and quantitative compariso
between theory and numerical simulations will be presen
elsewhere.

B. Correlation function and domain-size distribution

Next, let us consider domain growth resulting from
arbitrary initial condition. Figure 3 shows the evolution of a
initial condition consisting of a uniformly distributed mix o
11,0,21. The parameter values wereT50.4 andg58. Fig-
ure 4 shows the corresponding variation of the spin varia
s( i , j ) along the diagonal (i 5 j ) for the evolution pictures of
Fig. 3. At this value ofg, the concentration of 0’s rapidly

FIG. 2. Barrier dependence of the time to shrink a square dr
let (ts) in d52 MC simulations. The parameter values wereK
50, D53.2, andT was varied. We plotts vs g(5bD) on a linear-
log scale for square droplets of initial sizesL54,6,8 ~denoted by
the symbols indicated!. Each point is obtained as an average ov
100 independent runs. The low-T ~or high-g) data corresponds to a
straight line with slope 1, confirming thatts5t0 exp(g) for high g.
5-4
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drops to the equilibrium value, and the subsequent morp
ogy consists of coarsening domains rich in either11 or
21. We have confirmed numerically that, after the transi
period, the fraction of 0’s is determined by the equilibriu
Boltzmann factor. Furthermore, the density of 0’s is app
ciably higher in the interface regions than in the bulk. Bas

FIG. 3. Evolution pictures for our dynamical model from a ra
dom initial condition, consisting of a uniformly distributed mixtur
of equal amounts of11,0,21. The parameter values areT50.4
andg58. Typically, most 0’s are eliminated in the initial transie
regime, and their subsequent density is dictated by the approp
Boltzmann factor, with a much larger probability of being on t
domain boundaries. Our MC simulations were performed onN2

lattices (N5512), with periodic boundary conditions in both dire
tions. For clarity, the snapshots in the figure show only 2562 seg-
ments of the evolving system. In the pictures,11’s are marked in
black and21’s are unmarked.

FIG. 4. Variation of the spin variables( i , j ) along the diagonal
( i 5 j ) for the snapshots shown in Fig. 3.
04611
l-
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on our earlier arguments for shrinking of droplets, we exp
that domain growth in this case will proceed in the usu
fashion for the spin-1/2 Ising model, but with a time sca
renormalized by the factor exp(g).

First, we briefly consider the spatial correlation functio
and test it for dynamical scaling. As discussed earlier
scaling holds, we expect the correlation function to have
form C(rW,t)5g@r /L(t)#. Figure 5 presents scaled data f
the correlation function at~a! different times andg58, and
~b! different values ofg. We have followed the usual prac
tice of defining the length scaleLc(t) as the point where the
correlation function decays to half its maximum value@1#.
The scaled correlation function is in good agreement with
standard result for spin-1/2 ferromagnets due to Ohtaet al.
@23# ~OJK!, which is depicted as a solid line in Fig. 5.

A more detailed measure of the domain morphology is
domain-size distribution function. This has received cons
erably less attention in the literature than the real-space
relation function or its Fourier transform, the momentum
space structure factor@1#. In the present paper, we attempt
quantify this distribution function as its functional form wi
be a useful input in our calculation of the autocorrelati
function in Sec. V. Let us denote this distribution function
P( l ,t), where domain sizel P@0,̀ #, and consider the nor
malized form such that*0

`dlP( l ,t)51. We have computed
P( l ,t) numerically by examining the zero crossings of ord
parameter profiles of the type shown in Fig. 4. For an in
vidual run, we extract domain-size distributions by sweep
the lattice in both horizontal and vertical directions. Furth
more, as stated earlier, we average data over 5 indepen
runs.

We now investigate whether the domain distribution fun
tion also exhibits dynamical scaling with the formP( l ,t)
5L(t)21f @ l /L(t)#, whereL(t) is a measure of the charac
teristic domain size, e.g.,L(t)5^ l &. Figure 6 superposes dat

te

FIG. 5. Dynamical scaling of the spatial correlation functio
We plot C(r ,t) vs r /Lc(t), whereLc(t) is the distance over which
the correlation function falls to half its maximum value. The so
line is the scaled analytic form for spin-1/2 ferromagnets due

~OJK @23#, namely,C(r ,t)5(2/p)sin21(e2r2/t). ~a! Superposition of
data from different times~denoted by the specified symbols! for T
50.4 andg58. ~b! Superposition of data forT50.4 and different
values ofg56,7,8,9~denoted by the specified symbols!, at time t
55.53104 mcs.
5-5
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for P( l ,t)L(t) vs l /L(t) from different times, confirming the
scaling form. Moreover, the scaling functions are nume
cally indistinguishable for different values ofg, as shown in
Fig. 7.

As is evident from Fig. 7~b!, the tail of the scaling func-
tion exhibits an exponential decay. The entire function c
be approximated by the double-exponential form

f ~x!.aFexpS 2
2ax

a11D2expS 2
2ax

a21D G
[a@e2b1x2e2b2x#, ~7!

where the functionf (x) satisfies f (0)50, *0
`dx f(x)51,

and*0
`dxx f(x)51.

FIG. 6. Domain-size distribution functions for two different va
ues ofg, as specified. We superpose data from different times~de-
noted by the symbols indicated! for P( l ,t)L(t) vs l /L(t), where
L(t)5^ l & is the first moment ofP( l ,t). The parameter values ar
T50.4 and~a! g58 and~b! g59. The data sets are obtained fro
5 independent runs withN5512.

FIG. 7. Scaled domain-size distribution functions for differe
values ofg at t55.53104 mcs. We superpose data forP( l ,t)L(t)
vs l /L(t) for T50.4 andg56,7,8,9~denoted by the symbols indi
cated! on ~a! a direct plot, and~b! a linear-log plot. The solid line
corresponds to the double-exponential function in Eq.~7! with a
.2.0.
04611
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As Fig. 7 demonstrates, the sharp rise to the peak is
captured well by this functional form. We would like t
make two remarks in this context. First, the domain siz
below the peak are of the order of 2–3 lattice sites in o
simulations. These ‘‘domains’’ appear and disappear spo
neously due to thermal fluctuations and are difficult to ch
acterize by a scaling function. Second, one can use m
complicated functions to better represent the scaling fu
tion. However, as will become clear later, the exponen
decay off (x) subsequent to the peak is the relevant fact
which results in a stretched-exponential form for the autoc
relation function. The double-exponential function provid
this feature in a straightforward fashion, besides giving
reasonable description at smallx.

Finally, we examine the growth of the characteris
length scale. In the scaling regime, any measure of the len
scale exhibits the same dynamical behavior, up to a pre
tor. Here, we consider the time dependence of the first m
ment of the domain-size distribution function,L(t). Figure 8
plots L(t) vs t/exp(g) for different values ofg. This curve
exhibits two distinct regimes. The early-time regime can
identified with the rapid emergence of61-domains due to
the elimination of 0’s, and ends at aroundL.4 –5 lattice
sites. Following this, domain growth occurs by the rando
walk of steps along domain boundaries. This results in
AC growth law L(t);(t/t)1/2, wheret5t0 exp(g), as we
have confirmed from the result in Eq.~3!. In discrete sys-
tems, this random-walk picture is the counterpart
curvature-driven growth in continuous systems.

The asymptotic regime is in accordance with the behav
of Class 2 systems in the LMV classification. As the te
peratureT→0, the effective barrier diverges and the dyna
ics becomes progressively slower. However, the slow
down results from a divergent time scale rather than a fu
tional change in the domain growth law as, for example,
~a! the case with quenched disorder@4,5#, or ~b! the case of

t

FIG. 8. Time-dependence of characteristic domain length sc
We plot L(t), defined as the first moment of the domain-size d
tribution function P( l ,t), vs t/eg on ~a! a direct plot, and~b! a
log-log plot. We present data forT50.4 andg56,7,8,9—denoted
by the specified symbols. The solid line in~a! is a nonlinear fit
L(t)5a1b(t/eg)x to the data forg56. The best-fit exponent is
x50.4660.01, consistent with the Allen-Cahn growth law.
5-6
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frustrated nonrandom systems considered by Shoreet al. @6#.
Before we proceed, let us summarize the results of

section. We have demonstrated that local kinetic barrier
the selection-rule type do not add up to give a length-sc
dependent barrier. Thus, our system categorizes as Class
the LMV scheme. Domain growth is characterized by div
gent time scales asT→0 and freezes atT50. However, the
evolution morphology and the functional form of the doma
growth law remain unchanged~except atT50). In particu-
lar, we have quantified the domain-size distribution fun
tions, which will be an important input in our study of aut
correlation functions in Sec. V.

V. AUTOCORRELATION FUNCTIONS AND STOCHASTIC
MODELING

A. Numerical results and general remarks

Next, we consider the autocorrelation functionF(t0 ,t)
for phase ordering in our model, which is defined as

F~ t0 ,t !5
1

N2 (
i

@^si~ t0!si~ t01t !&2^si~ t0!&^si~ t01t !&#,

~8!

wheret0 is an initial reference time and the angular brack
refer to an average over independent runs with different
tial conditions and noise realizations. In the paramagn
state, each term in the above sum is equal, due to tran
tional invariance. However, this is not true in the low
temperature phase. As we have seen, the evolution proc
by formation and growth of domains. In this process, sp
which are in the domain interiors hardly ever flip, and t
time dependence is largely confined to the domain bou
aries.

Our numerical results are obtained for a sufficiently lar
initial time, t0550 000 mcs, so that the system is in t
asymptotic ordering regime. Figure 9 presents representa
results for the autocorrelation function. In Fig. 9, we p
data for f(t0 ,t)5F(t0 ,t)/F(t0,0) vs t for 2 values ofg.

FIG. 9. Plot of the normalized autocorrelation functio
f(t0 ,t)5F(t0 ,t)/F(t0 ,0) vst, wheret0550 000 mcs. We presen
data forT50.4 and~a! g58, and~b! g59. The solid line is a fit to
the analytical form in Eq.~13!, with best-fit parameter valuesa
.0.05 (g58), anda5.0.06 (g59).
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The solid line denotes the best fit to our data using the a
lytical expression presented later in Eq.~13!. This analytical
expression~and our numerical results! are consistent with a
stretched-exponential behavior at late times, which is a u
versal feature of systems exhibiting slow dynamics, e
structural glasses.

The stretched-exponential behavior of stress relaxatio
glasses has been understood in terms of the Glarum m
@7#. In this model, localized stresses are relaxed by the
fusion of defects. The multiplicity of relaxation time scale
arises due to the range of diffusion times of randomly d
tributed defects. Another general mechanism for stretch
exponential behavior has been suggested by Ngaiet al. @8#.
In their modeling, relaxation is mediated by quantum mod
e.g., phonons, which have a finite density-of-states at z
energy.

In the specific context of phase ordering systems, th
have been some studies of the autocorrelation funct
Thus, for the spin-1/2 ferromagnet, an extension of O
theory~which is a MF result, valid in the limitd→`) yields
the result@1#

F~ t0 ,t !5
2

p
sin21F ~11t/t0!d/4

~11t/2t0!d/2G . ~9!

For t@t0, we have an approximate power-law decay~rather
than stretched exponential!, F(t0 ,t).(4t0 /t)d/4

[(4t0 /t)l/2, where l is an exponent first introduced b
Fisher and Huse@24# in the context of spin glasses. Th
above result does not account for thermal fluctuations in
system. For example, Huse and Fisher@12# and Tanget al.
@13# have analytically shown that equilibrium fluctuations
the bulk domains result in a stretched-exponen
decorrelation—much faster than the power law obtain
from OJK theory. In the context of our dynamical model, w
will subsequently provide an understanding of the obser
stretched-exponential behavior using a simple stocha
model.

B. Stochastic model for autocorrelation

In this section, we show that the autocorrelation functi
can be viewed as the correlation function of a dichotom
Markov process in the parameter range of interest to us.
have seen that, at lowT and largeD, the fraction of 0’s is
very small. The flip of a spin from61→71 occurs only via
the 0 state, where the spin spends very little time. Thus,
dynamics of domain growth can be viewed in terms of fli
between11 and21 states, with flips at a site mediated b
the appearance of 0’s.

Let us first focus on a single spinsi(t), which we model
as a dichotomic variablesi(t)P$21,11%, with occasional
flips that change its value between -1 and11. ~We neglect
the small fraction of time spent in the 0 state.! We model the
occurrence of flips~or appearance of 0’s! at the site as a
probabilistic Markov process. For this purpose we use
continuous-time random walk~CTRW! formalism @25,26#,
which has become a powerful tool for describing a range
physical processes like anomalous diffusion, trapping,
5-7
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@27,28#. The method and its extensions appropriate to
current problem are described in Appendix A. The essen
physical input for determination of the autocorrelation fun
tion is the so-called waiting-time distributionc(t), which is
the probability that the spin does not flip in timet if a flip has
occurred att50. The resultant expression for the Lapla
transform of the autocorrelation function is@Eq. ~A 10! of
Appendix A#

F~s!5
1

s
2

2c~s!

tcs@22sc~s!#
, ~10!

where c(s) is the Laplace transform ofc(t), and tc

5*0
`c(t) dt. We will now model the waiting-time distribu

tion in the present context.
For large values ofg, the 0’s reach an equilibrium densit

in a short transient time. The probabilities for occurrence
0’s are pb.e2b(41D) ~in the bulk!, pe.e2b(21D) ~at an
edge!, andpc.e2bD ~at a corner!. The overall fraction of 0’s
for a domain of sizel is f l5(pbVb1peVe1pcVc)/(Vb1Ve
1Vc), whereVb , Ve, and Vc refer to the volumes of the
bulk, edges, and corners, respectively. We expect thatVb
; l 2, Ve; l , and Vc; l u, where the exponentu is zero for
smooth interfaces and nonzero for rough interfaces. In e
librium, interfaces in thed52 Ising model are rough at an
T.0 @29#. Furthermore, in the nonequilibrium simulation
described here, our numerical results show thatu.1. For
our parameter values and time regimes, the dominant co
bution to f l comes from the corners. As length scales
crease, the contribution to 0’s may arise primarily from t
edges or bulk, but we do not access such length scales in
simulations. Thus, the fraction of 0’s in the domain isf l
.gpc / l , whereg is a geometric factor.

We now assume that the decorrelation process is Poi
nian and the flip rate for the autocorrelation function of
domain is proportional to the fraction of 0’s. Thus, the co
responding waiting-time distribution is taken as

c~ t !.expS 2
gt

l t D , ~11!

wheret5t0 exp(g), with t0 being the time scale. Using Eq
~10!, we obtain the corresponding autocorrelation funct
for a domain of sizel as

F l~ t !.expS 2
2gt

l t D , ~12!

which is the usual exponential decay associated with a P
sonian process. Finally, we introduce the domain morph
ogy through the domain-size distribution functionP( l ,t),
which we had obtained numerically in Sec. IV B. In th
NCOP case, correlations between domains are neglig
Assuming that domains evolve independently in time,
have the overall autocorrelation function
04611
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F~ t0 ,t !.E
0

`

dlF l~ t !P~ l ,t01t !

5L~ t01t !21E
0

`

dl expS 2
2gt

l t D f S l

L~ t01t ! D
[E

0

`

dx expF2
at

x~ t01t !1/2eg/2G f ~x!, ~13!

where we have introduced the parametera52g/(bt0
1/2), and

L(t01t).b@(t01t)/t#1/2. The fits shown in Fig. 9 were ob
tained by evaluating the above integral witha as a fitting
parameter. The functional form off (x) was input directly
from the numerical simulation results in Fig. 7. The qual
of fits shown in Fig. 9 demonstrates that the above argum
capture the basic features of the decorrelation process in
model rather well.

To obtain an analytical understanding of the asympto
behavior ofF(t0 ,t), we use the double-exponential form fo
f (x) from Eq. ~7!:

F~ t0 ,t !.aE
0

`

dx expF2
at

x~ t01t !1/2eg/2G ~e2b1x2e2b2x!

[I 12I 2 . ~14!

We first focus on the integralI 1. In the asymptotic regime (t
large!, we perform a saddle-point expansion to obtain

I 1.S 2pa2

f 9~y0!
D 1/2F t1/4

~ t01t !1/8eg/8GexpF2
f ~y0!t1/2

~ t01t !1/4eg/4G ,

~15!

where

f ~y!5
a

y
1b1y,

y05S a

b1
D 1/2

. ~16!

A similar expression is obtained forI 2 in the saddle-point
approximation whent is large. The asymptotic form for the
autocorrelation function is a stretched exponential, with
stretching exponentb51/4 in this regime. The~slow!
stretched-exponential decay results from the convolution
exponential decays of individual domains with the doma
size distribution function. For much later times, the prima
contribution tof l is from the bulk domains. In that regime
our simple arguments above result in an exponential de
for the autocorrelation function.

A more accurate calculation of decorrelations arisi
from spins in domain interiors involves two waiting-tim
distributions, and is outlined in Appendix A. However, as w
said earlier, the parameter values used here effectively el
nate decorrelations arising from bulk fluctuations. Therefo
for the sake of brevity, we will not describe the requis
calculation here.
5-8
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VI. SUMMARY AND CONCLUSION

Let us conclude this paper with a brief summary and d
cussion of our results. We have undertaken a comprehen
MC simulation of a spin-1 model with constrained dynami
The constraint has the form of a selection ruleds561 so
that 61→0 and 0→61 are the only transitions permitted
Additionally, the states50 has an appreciably higher energ
than the statess561, giving rise to local kinetic barriers
We have investigated far-from-equilibrium dynamics in th
model—resulting from a rapid quench from a hig
temperature disordered~paramagnetic! state to a low-
temperature state, where the system prefers to be ord
~ferromagnetic!.

We have studied two aspects of domain growth in t
problem. First, we considered the domain morphology a
its evolution, as characterized by the spatial correlation fu
tion, the domain-size distribution function, and the tim
dependence of characteristic length scales. Our results d
onstrate that local barriers do not add up cooperatively
give length-scale dependent barriers. The temporal evolu
is analogous to that for the usual spin-1/2 ferromagnet, w
time scales renormalized by the Boltzmann factor result
from the local barrier. Thus, our system is a Class 2 sys
in the LMV classification scheme@22#. A feature of our
present paper is a careful characterization of the domain-
distribution function, which is an important input in the se
ond part of our paper.

The second aspect of domain growth investigated by u
the dynamical behavior of the autocorrelation function. W
have formulated a simple stochastic model based on dich
mic Markov processes to mimic spin dynamics in our mod
Our analytical results predict a stretched-exponential beh
ior over an extended time regime, which is consistent w
our numerical results. A similar behavior has also been p
dicted in the context of equilibrium fluctuations in the o
dered state of ferromagnets by Huse and Fisher@12# and
Tanget al. @13#. Clearly, the Huse-Fisher argument also a
plies to bulk domains in the nonequilibrium evolution co
sidered here, but these effects have been neglected in
present discussion. It is straightforward to incorporate
bulk decorrelations in the framework presented here.
course, the resulting contributions to the autocorrelat
function are translationally invariant in time, unlike the dec
rrelations arising at the moving interfaces.

At present, we are investigating constrained kinetics
systems with conserved order parameters, e.g., vaca
mediated phase separation in binary alloys@30#. In that case,
local barriers of the type discussed here are not relev
Nevertheless, a range of interesting behaviors is seen in
COP context also, as we will report in detail at a later sta
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APPENDIX A: CONTINUOUS-TIME RANDOM WALKS

In this appendix, we present relevant details of the st
dard continuous-time random walk CTRW formalism. In th
method, one introduces the probabilityp(n,t) that exactlyn
flips of a spins(t)P$21,11% occur in timet. For the sto-
chastic variables(t), whose value att50 is s0, the probabil-
ity p(s,tus0) of finding the values at time t is

p~s,tus0!5ds,s0 (
n even

p~n,t !1ds,2s0 (n odd
p~n,t !.

~A1!

The autocorrelation functionF(t) of this stochastic proces
is given by

F~ t !5 (
s561

(
s0561

ss0p~s,tus0!w~s0!, ~A2!

wherew(s0) is the initial-state distribution function for the
stochastic variable. Thus,

F~ t !5F (
n even

p~n,t !2 (
n odd

p~n,t !G (
s0561

s0
2w~s0!

[ (
n even

p~n,t !2 (
n odd

p~n,t !, ~A3!

becauses0
251.

The CTRW method computes the probabilitiesp(n,t) in
terms of the so-called waiting-time distribution functio
c(t), which has a central role in the physical formulation
the process. The functionc(t) is the probability that the spin
does not flip in timet, if a flip has occurred att50. In terms
of c(t) and its time-derivativeċ(t), we can obtain an ex-
pression forp(n,t):

p~n,t !5E
0

t

dtnE
0

tn
dtn21 . . . E

0

t2
dt1c~ t2tn!

3@2ċ~ tn2tn21!#@2ċ~ tn212tn22!# . . .

3@2ċ~ t22t1!#@2ċ0~ t1!#

5~21!nE
0

t

dtnE
0

tn
dtn21 . . . E

0

t2
dt1c~ t2tn!

3ċ~ tn2tn21!ċ~ tn212tn22! . . . ċ~ t22t1!ċ0~ t1!.

~A4!

Here, c0(t) represents the waiting-time distribution for th
first flip, which is given in terms ofc(t) by the relation

c0~ t !5
1

tc
E

t

`

dt8c~ t8!, ~A5!
5-9
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wheretc5*0
`c(t)dt.

Next, we consider the generating functionH(z,t), defined
as

H~z,t !5 (
n50

`

znp~n,t !. ~A6!

Its Laplace transform,

H~z,s!5E
0

`

dte2stH~z,t !, Re~s!.0, ~A7!

is determined in terms of the Laplace transformc(s) as

H~z,s!5
1

s
1

~z21!c~s!

tcs@12z1zsc~s!#
. ~A8!

Returning to the computation of the autocorrelation fun
tion, we note that its Laplace transform is given by

F~s!5E
0

`

dte2stF~ t !5 (
n even

p~n,s!2 (
n odd

p~n,s!.

~A9!

This quantity can be directly obtained by settingz521 in
H(z,s), yielding the compact expression:

F~s!5
1

s
2

2c~s!

tcs@22sc~s!#
. ~A10!

The above discussion is valid for spins with flip probab
ity independent of the state, e.g., corner spins with eq
numbers of -1 and11 neighbors. For spins inside bulk do
mains, it is useful to consider the following generalization
the above treatment. We introduce two waiting-time dis
butions due to the fact that, in~say! an up domain, the time
for flipping from up to down is much longer than from dow
to up. For an up domain, letc(t) and f(t) be the waiting
times for a spin-flip from ‘‘up to down’’ and ‘‘down to up,’’
respectively.@For the down domain, the roles ofc(t) and
f(t) are reversed.# We can write the probabilities forn flips
in an up domain as follows:
l-

e

Pu

04611
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p~0,t !5c0~ t !,

p~1,t !5E
0

t

dt1f~ t2t1!@2ċ0~ t1!#,

p~2,t !5E
0

t

dt2E
0

t2
dt1c~ t2t2!@2ḟ~ t22t1!#@2ċ0~ t1!#,

p~3,t !5E
0

t

dt3E
0

t3
dt2E

0

t2
dt1f~ t2t3!@2ċ~ t32t2!#

3@2ḟ~ t22t1!#@2ċ0~ t1!#, ~A11!

and so on. From this, the relevant Laplace transforms
obtained as follows:

(
n even

p~n,s!5c0~s!1c~s!ḟ~s!ċ0~s!

1c~s!ḟ~s!ċ~s!ḟ~s!ċ0~s!1•••

5c0~s!1c~s!
1

12ḟ~s!ċ~s!
ḟ~s!ċ0~s!,

(
n odd

p~n,s!52f~s!ċ0~s!2f~s!ċ~s!ḟ~s!ċ0~s!2•••

52f~s!
1

12ḟ~s!ċ~s!
ċ0~s!. ~A12!

Substituting the above results in the expression for
autocorrelation function, one obtains the expression

F~s!5
1

s
2

1

tcs

2f~s!c~s!

f~s!1c~s!2sf~s!c~s!
, ~A13!

where tc5*0
`dtc(t). Note that, if f(s)5c(s), F(s) re-

duces to our earlier expression in Eq.~A10!.
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