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Kinetics of domain growth in systems with local barriers
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We study domain growth in spin-1 lattice models having nonconserved spin-flip kinetics with local barriers.
Our primary motivation is to model the relaxational behavior of physical systems in which molecular motion
is impeded by local kinetic barriers. The kinetic constraint is such that a spin from @owp) state can flip
to a down(up) state only via the zero state, which has a higher energy. We examine how the usual curvature-
driven domain growth is affected by these local barriers, and whether the single-spin barriers have a collective
effect. This paper presents comprehensive numerical results for phase ordering dynamics in this model using
Monte Carlo simulations. We demonstrate dynamical scaling for domain-size distribution functions and spatial
correlation functions. We also present results for the time dependence of characteristic length scales and
autocorrelation functions. The length-scale behavior is interpreted in terms of the random walk of steps on
domain boundaries. Furthermore, we present a simple stochastic model to derive an analytic expression for the
autocorrelation function, which exhibits a stretched-exponential behavior over an extended regime—in agree-
ment with our numerical simulations.
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[. INTRODUCTION in this context is due to Shoret al. [6], who formulated
arguments for slow domain growth in Ising models with
There has been much interest in the temporal behavior afompeting interactions but no quenched disorder.

systems approaching equilibrium. Systems that have been An alternative tool to characterize nonequilibriutar
guenched from a disordered phase to an ordered phase do resjuilibrium) systems is the autocorrelation function:
order instantaneously. Typically, the length scale of ordered
regions grows with time as the different ordered phases com- @ (t,,t)=(s(r,to)S(r,to+1))—(S(F,to) }S(F,to+1)),
pete to select an equilibrium state. The process whereby the
system orders is referred to as “phase orderiri@f “do-
main growth” or “coarsening’), and has now been studied which explicitly depends on both timeg,(andt) in the case
extensively[1]. Perhaps the most relevant feature of phasef nonequilibrium systems. This quantity has been exten-
ordering systems is that the time-dependent evolution subsgively studied in the context of glassy dynamics, where it is
quent to the quench usually exhibits a dynamical-scalinknown to exhibit a stretched-exponential fofif-11]. Much
property[2,1]. Thus, the spatial correlation functi@(ﬁt) effort has focused on understanding this slow dynamics, par-
=(s(R,t)s(R+T,t)), wheres(rt) is the appropriate order ticularly in the context of systems without quenched disor-

parametefOP) at pointi and timet after the quench, has the der, e.g., structural glasses. Some analytical studies have also
scaling form ’ argued for similar stretched-exponential behaviobdgt,,t)

in equilibrium fluctuations of ordered ferromagnéi®,13.
. However, these arguments have not been supported by the
C(F,t):g(—). (1)  Monte Carlo(MC) simulations of Graham and Grafit4].
L(t) This paper focuses on the phase ordering dynamics of a
special case of the spin-1 Blume-Emery-GriffittBEG)

In physical terms, Eq(1) reflects the fact that the mor- model[15]. The feature of the dynamics we study here is the
phology of the coarsening system, describedyfy), is un-  introduction of local barriers to single spin-flip kinetics. The
changed in time, but the scale of the morphology grows astatic properties of the BEG model have been extensively
L(t). For pure and isotropic systems with a scalar OP, thénvestigated 15—20, but there has been only limited study
growth of L(t) depends on whether or not the OP is con-of its nonequilibrium properties. This paper presents detailed
served by the system dynamics. For the case with noncorMC results for both spatial correlation and autocorrelation
served ORNCOP), we havel (t)~t'2 which is referred to  functions for the far-from-equilibrium dynamics of the BEG
as the Allen-CahrfAC) growth law. On the other hand, for model.
the case with conserved OOP and no hydrodynamic Let us conclude this section by providing a broad over-
effects, we havel (t)~t*3, referred to as the Lifshitz- view of this paper. There are two primary goals of our paper.
Slyozov growth law[1]. For randomly disordered systems First, we wish to examine the manner in which local kinetic
that contain quenched impurities, the domain walls can bdarriers affect growth kinetics and domain morphology, i.e.,
trapped and the growth df(t) becomes much slower, often we investigate the validity of dynamical scaling in the con-
exhibiting logarithmic time dependencig€3-5|. Recent in- text of a larger class of models. Second, we want to obtain an
terest has also focused upon logarithmically slow dynamicsnalytical understanding of autocorrelation functions in these
in systems without quenched disorder. An interesting workmodels. This paper is organized as follows. Section Il pro-
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vides background material on domain growth, in the contextancel in t steps is a generalization of a formula due to
of which our subsequent results will be interpreted. In SecLagrange{21] :
[ll, we describe our model and provide a brief review of its

L-1
static properties. In Sec. IV, we present and discuss our nu- . 2 cos ¢ _ ¢
merical results for(a) spatial correlation functions(b) P(LO=1 2L—-1 kZo sin ¢y {1-[a+2pcos2¢]},
domain-size distribution functions, angt) characteristic 3)

length scales. In Sec. V, we present our numerical results for _ _
the autocorrelation function and describe a simple stochasti¢#here ¢, = m(2k+1)/(4L—2). The first-passage tim@ip
model that mimics the evolution. Finally, Sec. VI concludes!0 @ prefactoris obtained by settin@ (L ,t) to a fixed value.

this paper with a brief summary of our results and somelNis yields a~L? behavior even at rather small values.of
issues for future consideration. as we have ascertained by explicit calculation.

In the general situation, the above considerations imply a
coarsening length scale(t)~t*?, providing an equivalent
way of interpreting curvature-driven growth in the context of
discrete lattice mode[$]. Furthermore, since no energy bar-
rier occurs on this patfi.e., corner performing random walk

The phase ordering system evolves from an initial nonon an edgg such coarsening obviously occurs evenTat
equilibrium configuration towards a final state by going =0.
through a number of intermediate configurations. The evolu- An important step towards a broader understanding of do-
tion of the system from one state to another can be undemain growth laws is due to Lat al.[22] (LMV ), who pro-
stood in terms of paths in state space. The probability assodded a classification of domain-coarsening laws for noncon-
ciated with a particular path is given by the usual statisticaserved systems. They proposed four different classes of
weight of intervening configurations, which is largely deter-systems, determined by the dependence of the energy barrier
mined by the highest-energy configuration encounteredo coarsening on the characteristic domain length. This clas-
along that path. At low temperatures, paths which encountegification is best understood by considering the equation for
lowest-energy barriers will clearly dominate. At higher tem- curvature-driven growtfil]:
peratures, the entropic factor arising from a multiplicity of
paths should also be accounted for. Therefore, the evolution di(t) a(L,T) 4)
problem is equivalent to one of diffusion in a high- dt  L(t) ’
dimensional configuration space with a complex energy
landscape(Of course, we should stress that a better descripwhere the functiom(L,T) is the diffusion coefficient, which
tion would be in terms of the evolution of an ensemble ofdepends on length scale and temperature, in general. Follow-
initial states to another ensemble of final states. ing the discussion of Shoe al.[6], the LMV classification

Let as elucidate this point with a well-known example, can be stated in terms of the behavioragt., T).

i.e., the spin-1/2 ferromagnetic nearest-neighbor Ising model (a) Class 1systems are those for whic(L,T) is inde-

in dimensiond=2 with zero-magnetic field. Let this system pendent oL and remains nonzero ds-0. In these systems,

be quenched from a disordered initial state to a temperaturéere exist relaxation paths that have no energy barrier and
T below its critical temperaturd,. Typically, the initial ~ the nature of relaxation does not depend on the coarsening
state has equal numbers of up and down spins, which ardéngth scale. The Ising model discussed above clearly be-
randomly distributed through the lattice. The system startéongs to this class. In generdl(t)~t*? for this class of
ordering locally, and soon develops a number of up andystems.

down domains, competing with each other to grow. As time (b) Class 2systems are those where the minimum energy
goes on, the number of domains decreases due to growth arriers are again independentlgfbut the elementary dif-
size of the remaining domains. To understand this coarseriusion processe.g., a corner moving along an eddes an

ing, it is instructive to consider shrinking of a single squareenergy barrierEg, so thata(L,T)=agpexp(—Eg/T) (kg
domain of sideL. If we take the strength of the nearest- =1). In this case, we again obtairt ¥-law, but with a time
neighbor interaction to bd, the energy cost to flip a spin scaler= 1, expEg/T). It is evident from the above equation
inside a domain is 8 On the boundary, this cost isJ4 that domain growth will be slow for this class of systems
while it is O at the corners of the domain. Since a corner spirwith L(t) constant for time$< 7, while for large times the
can be flipped without energy cost, the most probable patigrowth law isL(t)~(t/7)Y2.

for domain shrinking begins with flipping of one of the cor-  (c) For Class 3systems, the activation energy grows lin-
ner spins, which creates two corners on the edges. This flip igarly with L. An example of this is a system with quenched
followed by a random walk of the corner along an edge, eaclimpurities that trap the domain walls with a fixed ene(ggty
step of which has no energy cost. Thus, an edge oflsise  €) per unit length. In that case, we have a short-time growth
eliminated in a time proportional tb?. As a matter of fact, law L(t)~t2 which crosses over to a logarithmic growth
this time can be calculated quite accurately if one considersaw at late times, namelyL(t)~Te In(t/7) with 7
one-dimensional random walk with probabilityto jump =L T/(age), L. being a crossover length scale.

right or left; and probabilityg of not jumping. The resultant (d) Finally, Class 4systems are those for which the en-
expression for the first-passage probability of covering a disergy barriers grow a&™, wherem=1. This situation also

Il. CLASSES OF DOMAIN GROWTH IN SYSTEMS
WITH NONCONSERVED ORDER PARAMETER
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arises in the context of systems with quenched disdi8ler T T T
Again, the short-time growth law is(t) ~t*2, which crosses
over to a “logarithmic” growth law, namely, L(t) 8t \ g
~(Te HYInt/a)TV™ with 7=L2""T/(maye), L, being a FERROMAGNETIC
crossover length scale.

The general classification described above will prove use-
ful in our subsequent discussion of domain growth in sys-
tems with local kinetic barriers. 4r ]

<
I1l. DETAILS OF MODELING \\
A. Brief review of static properties

The BEG model is a spin-1 Ising model with two order 0 /:Tc’ A)
parameters, i.e., the dipole and quadrupole moments, and
was initially proposed to study phase separation and super- ‘“‘“"“E"“A )
fluid ordering in *He-*He mixtures[15]. Its subsequent ap- et PARAMAGNETIC
plications include condensation and phase separation in bi- -4 L L L
nary and ternary fluids[16], microemulsions [17], 0 1 2 3 4
semiconducting alloy§18], etc. The BEG model exhibits a T
rich phase diagram, which has been extensively explored by
a variety of techniquegl9,20). FIG. 1. MF phase diagram of tlte=2 BEG mode_l in the'{'{A)

In its most general form, the BEG Hamiltonian can bePlane wherk,M,h=0. Parameters are measured in units,dfe.,
written as follows: J=1. Aline of first-order transitiong&dashed lingterminates at the

tricritical point (T;,A,), and continues on as a line of second-order
M transitions (solid line. The equation of the solid line is @B
H= —J(Z:) SiSj— K(}:> Sizsjz_ > <§:> (Sizsj +5S 51-2) =exp(BA)+2, whereB=1/T (kg=1). Important points marked on
ij i ij

the phase diagram aréa) the tricritical point, (T;,A)=(3,
—3In4), and (b) the critical point of the spin-1 Ising model,
(TC,AC)=(§,O). Our dynamical simulations correspond to
guenches fronT = to the hatched region of the phase diagram.
where the angular brackets refer to a sum over nearest-

neighbor pairs,J(>0) is the ferromagnetic exchange- |, Eq. (6), q is the coordination number ang= 1/T with

interaction strength; K is the quadrupole exchange- , _ . .
interaction strengthy is an external magnetic field, aidis Kg=1. The model reduces to th? spin-1 Ising model in the
' ! absence of quadrupole and anisotropy terris=A=0).

the anisotropy field. In the present exposition, we focus %rhis exhibits a second-order paramagnetic-ferromagnetic

the case withiM =h=0. Furthermore, our dynamical simu- - o .
y transition atT .= 2q/3, where we measure quantities in units

lations are in the parameter rangeA =0. . - o )
For our study of far-from-equilibrium dynamics, only of J, i.e.,J=1. Let us now individually examine the cases

broad features of the phase diagram are relevant. Toward th'igz,o andA=0. i i
end, it is instructive to examine the nature of the ground state (1) K=0 case. The poin = —q/2 corresponds to a first-
atT=0. There are three possible states—two with equal enorder transition. A§ increases, the transition continues to be
ergy (s;=*1 Vi), and the stats;=0 YVi. The energy of the first order until a temperaturg = g/3 is reached. The line of
two equivalent states i€.,=—3N(qJ+qK+2A), while first-order transitions terminates at the tricritical point
that of ;=0 is E,=0. Therefore, the ground state is para-(T¢,A;), where A;=—(q/3)In(4). Beyond this point, the
magnetic if J+gK+2A)<0 and ferromagnetic other- transition is continuous. The relevant MF phase diagram is
wise, and a first-order transition occurs at=-—(gqJ shown in Fig. 1, and is well-known in the literatuir5,19.
+qK)/2. ForT>0 but small, we expect a similar first-order Most of our dynamical simulations are in the context of this
transition by continuity arguments. phase diagram—we consider quenches from a high-
For arbitraryT, we invoke the mean-fieldMF) approxi-  temperature disordered phase to the hatched region of the
mation, where it is straightforward to obtain self-consistentphase diagram. The results presented hereKier0 are
equations for the two order paramete¢s;)=m and(s?)  quantitatively similar(except for prefactojsto those ob-

—hY, 5—A>, s?, s==*1,0, ©)

=p. These equations have the form tained fork >0, which is the region of interest to us.
. (i) A=0 case. In this case, the first-order transition oc-
e 2 sini(BgJIm) (6)  cursatk=—1. AsT increases, we have similar behavior as
exd — B(qKp+A)]+2 costifqIm)’ in the K=0 case, i.e., the transition continues to be first
order until a tricritical point is reached. Beyond this point,
B 2 cosligqdm) the transition becomes second order. The detailed MF phase
P= exgd —B(qKp+A)]+2 costiggim)’ diagram has been explored extensively in R&€].
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B. Dynamical version of model T T T

¢ Do
coc
o
XN
o

We are interested in investigating the far-from-
equilibrium evolution of the BEG model with kinetic con- 10 ° ’
straints. The spin-1 model has no intrinsic dynamical evolu-
tion. We introduce stochastic kinetics by placing the system 4

in contact with a heat bath. In this paper, we have used MC or ° 1

simulations to study the BEG model with Glauber spin-flip 2 : ° .

kinetics on ad=2 square lattice. We imposed a kinetic con- Wk oo ° 4

straint such that transitions from1— +1 were forbidden, o oo °

i.e., only transitions from=1—0 and 0— =1 were permit- %:' o0l o

ted. Typically, such a kinetic constraint would arise from a 1%} o“”:oo ° i
oo

selection rule(e.g., quantum-mechanigagoverning spin
transitions, e.g.9s= = 1. In this paper, we consider physical
situations in whichy= BA is positive and large, so that there 10
is a strong local barrier for the two-step transitidriL—0

—*1. This mimics a continuous degree of freedom that Y
encounters a barrier while going from one low-energy con-
figuration to another. We would like to understand the im-
plications of this local barrier for phase ordering dynamics in

this s¥stem. d d ib | | brief log scale for square droplets of initial sizes=4,6,8 (denoted by
Before we proceed to describe results, let us brie Ythe symbols indicated Each point is obtained as an average over

present details of our_nume_rical simulation techniques. We g independent runs. The IoW{or high-y) data corresponds to a
have conducted MC simulations of our model WhA=0  straight line with slope 1, confirming that=r, exp() for high y.

on lattices of sizeN?, with periodic boundary conditions in
both directions. Subsequently, we present resultskferO
alone, as these are quantitatively similar to results obtaine
for K>0. All parameters are measured in unitsJpf.e., J

FIG. 2. Barrier dependence of the time to shrink a square drop-
let () in d=2 MC simulations. The parameter values wéfe
=0, A=3.2, andT was varied. We plots vs y(= BA) on a linear-

redecessor. This process continues until the last spin in the
roplet has been flipped. Therefore, the optimal path for

=1. We have done simulations with both synchronous aniz.”nhli'gg _a 4slgiaAre L?]qyrllrcerz;lgmntl)_url?lr;g enzrr%y t.’a:'?lis of
sequential updating, with equivalent results. The results pre- ;gses Btr:e N mbér of Is'tes KS) b(la ﬂ.’ ed quli the ?alrzle’r ! -bar—
sented in this paper correspond to the case of synchronm% u ! Ibp u 9y

updates. The initial condition for a run generally consisted oI{Leer fh/?\tlllIctlgissggcr:g(tai'o1n—hsl,ir$e0rrrrzsg?snc%ss$§ iﬁlgsesczusystem n
a random distribution of equal numbers of ’ L

+1,0,~ 1—corresponding to a high-temperature disordered Figure 2 _shows MC results for the time to shrink a square
configuration. At timet=0, the system was quenched into dro_plet (7 in d'—2, whenK =0. We present data for, vs

the hatched region of the phase diagram in Fig. 1, where thé’(_ﬁA) on a linearlog plot—activation over a constant-
equilibrium state is ferromagnetic. All statistical data pre—.energy barrier shoul_d Y'eld a straight line with unit slope,
sented subsequently is obtained from 5 independent rudeS 7s= 7o €XP(). This is seen to be the case for large val-
with lattice sizedN=512, except where stated otherwise. As ues ofy In Fig. 2, confirming that there is a (_:onste(mther
we demonstrate later, this proved sufficient to obtain high—than length-scale dependef@]) energy barrier to droplet

. . hrinking.
uality numerical data. S . o .
d y We can obtain a quantitative estimate of the droplet-

shrinking time by using the expression in Eg). At low T,

the shrinking process proceeds by the successive removal of
A. Shrinking of a square droplet layers through the random walk of steps. The shrinking time
is obtained as the sum of first-passage times for random
walks of sizeL, (L—1), etc. We are presently investigating
this problem in some detail, and quantitative comparisons

square droplet ofsay +1 in a backgrouqd of 1.' AS d|s.- between theory and numerical simulations will be presented
cussed by Shoret al.[6], a careful analysis of this situation elsewhere

clarifies the nature of barriers to the domain growth process,
i.e., whether or not the barriers depend upon the length scale.
In this context, a bulk spin-fligi.e., +1—0) has an en-
ergy cost of (4-4K+A). For a boundaryother than cor- Next, let us consider domain growth resulting from an
nen spin, the cost is (24K +A), and for a corner spin, the arbitrary initial condition. Figure 3 shows the evolution of an
cost is (K +A). Hence, there is always a barrier to evolu- initial condition consisting of a uniformly distributed mix of
tion when (K+A)>0, and the most probable evolution +1,0,—1. The parameter values wéefe= 0.4 andy=38. Fig-
path in configuration space starts by flipping the corner spinure 4 shows the corresponding variation of the spin variable
After the corner spin flips, new corner spins are created and(i,j) along the diagonali& j) for the evolution pictures of
these also have to cross the same energy barrier as thé&iig. 3. At this value ofy, the concentration of 0’s rapidly

IV. DOMAIN GROWTH AND PATTERN MORPHOLOGY

Let us initiate our study of phase ordering in this 2
system by examining a simple situation, i.e., we consider

B. Correlation function and domain-size distribution
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2 3
t = 5x10" mes t=5x10" mcs °  t=55x10" mes o Y=6
; . =y N @ t=5.5x10° mes o y=7
A 4 o y=8
¢ t=55x10" mes s =9
4 £=55x10" mos — OIK
— 0K
2
©
0 2 4 6

(a) riL, (b) riL,

FIG. 5. Dynamical scaling of the spatial correlation function.
We plotC(r,t) vsr/L.(t), whereL(t) is the distance over which
the correlation function falls to half its maximum value. The solid
line is the scaled analytic form for spin-1/2 ferromagnets due to
0 100 200 0 100 200 (OJK[23], namely,C(r,t) = (2/a)sin"X(e™"™). () Superposition of
data from different timesdenoted by the specified symbpfer T
=0.4 andy=8. (b) Superposition of data foF =0.4 and different

FIG. 3. Evolution pictures for our dynamical model from a ran-
dom initial condition, consisting of a uniformly distributed mixture o )
of equal amounts of-1,0,—1. The parameter values afe=0.4  values ofy=6,7,8,9(denoted by the specified symbplst timet
andy=8. Typically, most O's are eliminated in the initial transient ~ 2% 10° ms.

regime, and their subsequent density is dictated by the appropriate i f hrinki f drool
Boltzmann factor, with a much larger probability of being on the O OUr €arlier arguments for shrinking of droplets, we expect

domain boundaries. Our MC simulations were performedn\gn  that domain growth in this case will proceed in the usual

lattices (N="512), with periodic boundary conditions in both direc- fashion for the spin-1/2 Ising model, but with a time scale

tions. For clarity, the snapshots in the figure show only?2seg-  fenormalized by the factor exp)

ments of the evolving system. In the pictures]’s are marked in First, we briefly consider the spatial correlation function

black and—1’s are unmarked. and test it for dynamical scaling. As discussed earlier, if
scaling holds, we expect the correlation function to have the

drops to the equilibrium value, and the subsequent morphoform C(r,t)=g[r/L(t)]. Figure 5 presents scaled data for
ogy consists of coarsening domains rich in eithet or  the correlation function ata) different times andy=8, and
—1. We have confirmed numerically that, after the transientb) different values ofy. We have followed the usual prac-
period, the fraction of 0’s is determined by the equilibrium tice of defining the length scale;(t) as the point where the
Boltzmann factor. Furthermore, the density of 0's is appre-£orrelation function decays to half its maximum valds.

ciably higher in the interface regions than in the bulk. Based! he scaled correlation function is in good agreement with the
standard result for spin-1/2 ferromagnets due to Gttal.

[23] (OJK), which is depicted as a solid line in Fig. 5.
: . : . A more detailed measure of the domain morphology is the
1 T domain-size distribution function. This has received consid-
erably less attention in the literature than the real-space cor-
relation function or its Fourier transform, the momentum-
space structure factpt]. In the present paper, we attempt to
quantify this distribution function as its functional form will
-1 . . . . be a useful input in our calculation of the autocorrelation
function in Sec. V. Let us denote this distribution function as

t=5x10" mes t=5.5%10" mes P(l,t), where domain sizé €[0,¢], and consider the nor-
1k ' AN L ' ' malized form such thafydIP(l,t)=1. We have computed
P(l,t) numerically by examining the zero crossings of order-
parameter profiles of the type shown in Fig. 4. For an indi-
vidual run, we extract domain-size distributions by sweeping
the lattice in both horizontal and vertical directions. Further-
l more, as stated earlier, we average data over 5 independent
0 100 200 0 100 200 runs.

We now investigate whether the domain distribution func-
tion also exhibits dynamical scaling with the forRY(l,t)

FIG. 4. Variation of the spin variablg(i,j) along the diagonal =L(t) *f[I/L(t)], whereL(t) is a measure of the charac-
(i=j) for the snapshots shown in Fig. 3. teristic domain size, e.gl,(t)=(I). Figure 6 superposes data

t=5x10" mos t=5x10" mos

s(i,i)

s(i,0)

-1

i i
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s © 5.5x10” mes o © 5.5x10” mes =6
Ir % @ 5.5x10° mes K 3 5.5x10° mes 1 ol F;
;‘% © 5.5x10" mes AAg  5.5x10* mes 64| o tg 1
5 o 4 5.5x10° mes s 4 55x10° mes =
LY %
A % o i 2+ 4
2 9 s %
<
: . 8 <
& 051 a % b e 2 1 3 16F i
: % 1
A
& A
° 8k AA -
r3 4 b )
n o a
e fo 4k 4 J
% 1 2 3 4 0 1 2 3 4 ol . . . . . )
@) i ) L 500 1000 1500 0.02 1 50 2500
(@) t/¢' mes (b) t/¢' mes

FIG. 6. Domain-size distribution functions for two different val-
ues ofy, as specified. We superpose data from different titdes FIG. 8. Time-dependence of characteristic domain length scale.
noted by the symbols indicatedor P(l,t)L(t) vs I/L(t), where  We plotL(t), defined as the first moment of the domain-size dis-
L(t)=(l) is the first moment oP(l,t). The parameter values are tribution function P(l,t), vs t/e” on (a) a direct plot, andb) a
T=0.4 and(a) y=8 and(b) y=9. The data sets are obtained from log-log plot. We present data fdr=0.4 andy=#6,7,8,9—denoted
5 independent runs witN=512. by the specified symbols. The solid line {g) is a nonlinear fit
L(t)=a+b(t/e")* to the data fory=6. The best-fit exponent is

for P(I,t)L(t) vsI/L(t) from different times, confirming the x=0.46+0.01, consistent with the Allen-Cahn growth law.

scaling form. Moreover, the scaling functions are numeri- _ _ .
cally indistinguishable for different values of as shown in As Fig. 7 demonstrates, the sharp rise to the peak is not

f(x)=a

where the functionf(x) satisfiesf(0)=0, [5dxf(x)=1,

tion exhibits an exponential decay. The entire function carbelow the peak are of the order of 2—3 lattice sites in our
acterize by a scaling function. Second, one can use more

=ale "*—e 2], (7)  decay off(x) subsequent to the peak is the relevant factor,

and Jdxxf(x) = 1. this feature in a straightforward fashion, besides giving a

Fig. 7. captured well by this functional form. We would like to

be approximated by the double-exponential form simulations. These “domains” appear and disappear sponta-
complicated functions to better represent the scaling func-
which results in a stretched-exponential form for the autocor-
reasonable description at small

As is evident from Fig. @), the tail of the scaling func- make two remarks in this context. First, the domain sizes
neously due to thermal fluctuations and are difficult to char-
2ax 2ax
ex a1 &
tion. However, as will become clear later, the exponential
relation function. The double-exponential function provides
Finally, we examine the growth of the characteristic

o y=6 o y=6 length scale. In the scaling regime, any measure of the length
T %& ; z:; : z ; scale exhibits the same dynamical behavior, up to a prefac-
g"% A =9 s =9 tor. Here, we consider the time dependence of the first mo-

& ?; ment of the domain-size distribution functidn(t). Figure 8

plots L(t) vs t/exp(y) for different values ofy. This curve
exhibits two distinct regimes. The early-time regime can be
identified with the rapid emergence afl-domains due to
the elimination of 0's, and ends at arouhed=4-5 lattice
sites. Following this, domain growth occurs by the random
walk of steps along domain boundaries. This results in the
AC growth law L(t)~(t/7)¥? where r=r,exp(y), as we
have confirmed from the result in E@). In discrete sys-
tems, this random-walk picture is the counterpart of
curvature-driven growth in continuous systems.
@ L ® s The asymptotic regime is in accordance with the behavior
FIG. 7. Scaled domain-size distribution functions for different Of Class 2 systems in the LMV classification. As the tem-
values ofy att="5.5x 10* mcs. We superpose data (], t)L(t) peratureT— 0, the effective barrier diverges and the dynam-
vsI/L(t) for T=0.4 andy=6,7,8,9(denoted by the symbols indi- ICS becomes progressively slower. However, the slowing
cated on (a) a direct plot, andb) a linear-log plot. The solid line down results from a divergent time scale rather than a func-

corresponds to the double-exponential function in &g.with a  tional change in the domain growth law as, for example, in
=2.0. (a) the case with quenched disordér5], or (b) the case of

P(OL
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' ' ' ' ' ' The solid line denotes the best fit to our data using the ana-
lytical expression presented later in E3). This analytical
expressionand our numerical resultare consistent with a
stretched-exponential behavior at late times, which is a uni-
versal feature of systems exhibiting slow dynamics, e.g.,
structural glasses.

The stretched-exponential behavior of stress relaxation in
glasses has been understood in terms of the Glarum model
[7]. In this model, localized stresses are relaxed by the dif-
fusion of defects. The multiplicity of relaxation time scales
arises due to the range of diffusion times of randomly dis-

T 0 10 a0 510 O 10 20 a0 a0’ tributed defects. Another general mechanism for stretched-
(a) ¢ mos ® ¢ mes exponential behavior has been suggested by Mgal. [8].
_ ) ~Intheir modeling, relaxation is mediated by quantum modes,

FIG. 9. Plot of the normalized autocorrelation function, e.g., phonons, which have a finite density-of-states at zero
&(ty,t) =D (tg,t)/P(ty,0) vst, wheret;=50 000 mcs. Wg prgsent energy.
data forT=0.4 and(@ y=8, and(b) y=9. The solid line is a fit to In the specific context of phase ordering systems, there
the analytical form in Eq(13), with best-fit parameter values  ,ye peen some studies of the autocorrelation function.
=0.05(y=8), anda==0.06 (y=9). Thus, for the spin-1/2 ferromagnet, an extension of OJK

frustrated nonrandom systems considered by Sabee [6]. :Egorgs(mg'f]h is a MF result, valid in the limidl— ) yields

Before we proceed, let us summarize the results of this

At

section. We have demonstrated that local kinetic barriers of a4

. . 2 . (1+t/ty)
the selection-rule type do not add up to give a length-scale D(ty,t)= —sin” Y| ———|. 9
dependent barrier. Thus, our system categorizes as Class 2 in ™ (1+1t/2ty)9?

the LMV scheme. Domain growth is characterized by diver-

gent time scales @—0 and freezes aF=0. However, the For t>t,, we have an approximate power-law decesther
evolution morphology and the functional form of the domainthan  stretched ~ exponential ~ ®(to,t)=(4ty/t)¥*
growth law remain unchange@xcept atT=0). In particu- =(4to/t)"2, where \ is an exponent first introduced by
lar, we have quantified the domain-size distribution func-Fisher and Husg¢24] in the context of spin glasses. The
tions, which will be an important input in our study of auto- above result does not account for thermal fluctuations in the
correlation functions in Sec. V. system. For example, Huse and FishE2] and Tanget al.

[13] have analytically shown that equilibrium fluctuations in
the bulk domains result in a stretched-exponential

V. AUTOCORRELATION FUNCTIONS AND STOCHASTIC . .
decorrelation—much faster than the power law obtained

MODELING -
from OJK theory. In the context of our dynamical model, we
A. Numerical results and general remarks will subsequently provide an understanding of the observed
Next, we consider the autocorrelation functidr(ty,t) smtroe(;cgred—exponentlal behavior using a simple stochastic

for phase ordering in our model, which is defined as

B. Stochastic model for autocorrelation

1
®(to.)= N2 Z [(si(to)si(to+ 1)) —(si(to) }(si(to+1))], In this section, we show that the autocorrelation function
(8) can be viewed as the correlation function of a dichotomic
Markov process in the parameter range of interest to us. We
wheret, is an initial reference time and the angular bracketshave seen that, at loW and largeA, the fraction of 0's is
refer to an average over independent runs with different inivery small. The flip of a spin fromt: 1— + 1 occurs only via
tial conditions and noise realizations. In the paramagnetithe O state, where the spin spends very little time. Thus, the
state, each term in the above sum is equal, due to transla@ynamics of domain growth can be viewed in terms of flips
tional invariance. However, this is not true in the low- between+1 and—1 states, with flips at a site mediated by
temperature phase. As we have seen, the evolution proceethe appearance of 0's.
by formation and growth of domains. In this process, spins Let us first focus on a single sp&(t), which we model
which are in the domain interiors hardly ever flip, and theas a dichotomic variabls;(t) e {—1,+ 1}, with occasional
time dependence is largely confined to the domain boundflips that change its value between -1 and. (We neglect
aries. the small fraction of time spent in the 0 staté/e model the
Our numerical results are obtained for a sufficiently largeoccurrence of flipgor appearance of Ojsat the site as a
initial time, t,=50000 mcs, so that the system is in the probabilistic Markov process. For this purpose we use the
asymptotic ordering regime. Figure 9 presents representativeontinuous-time random walkCTRW) formalism [25,26],
results for the autocorrelation function. In Fig. 9, we plotwhich has become a powerful tool for describing a range of
data for ¢(tg,t) =®(tg,t)/P(ty,0) vst for 2 values ofy.  physical processes like anomalous diffusion, trapping, etc.
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[27,28. The method and its extensions appropriate to the
current problem are described in Appendix A. The essential

physical input for determination of the autocorrelation func-
tion is the so-called waiting-time distributiaf(t), which is
the probability that the spin does not flip in timi a flip has
occurred att=0. The resultant expression for the Laplace
transform of the autocorrelation function [igq. (A 10) of
Appendix A]

2(s)

(s)=35- 82— sy(s)]’

(10

where ¢(s) is the Laplace transform ofj(t), and 7,
= [, ¥(t) dt. We will now model the waiting-time distribu-
tion in the present context.

For large values of, the 0’s reach an equilibrium density

PHYSICAL REVIEW E 63 046115

CD(to,t)zJ:dlfl>|(t)P(I,t0+t)

=L(tg+t)” 1f dlexp( ) ( LT D)

at
f dxex ;{ NS TR y/211‘(x),

where we have introduced the parameter2g/ (bTOIZ) and
L(tyg+1t)=b[(ty+1)/7]*2 The fits shown in Fig. 9 were ob-
tained by evaluating the above integral withas a fitting
parameter. The functional form df(x) was input directly
from the numerical simulation results in Fig. 7. The quality
of fits shown in Fig. 9 demonstrates that the above arguments
capture the basic features of the decorrelation process in our

(13

in a short transient time. The probabilities for occurrence ofmodel rather well.

0's are pp=e P“*4) (in the bulk, pe=e #?*%) (at an
edge, andp,=e#* (at a cornex. The overall fraction of 0's
for a domain of sizé is f;=(p,Vp+ peVet PcVe)/(Vp+ Ve
+V.), whereV,, V. andV, refer to the volumes of the
bulk, edges, and corners, respectively. We expect ¥hat
~12, Vo~1, andV.~1?, where the exponent is zero for

smooth interfaces and nonzero for rough interfaces. In equi

librium, interfaces in thal=2 Ising model are rough at any
T>0 [29]. Furthermore, in the nonequilibrium simulations
described here, our numerical results show thatl. For
our parameter values and time regimes, the dominant contr
bution to f; comes from the corners. As length scales in-
crease, the contribution to 0’s may arise primarily from the
edges or bulk, but we do not access such length scales in o
simulations. Thus, the fraction of 0’'s in the domainfis
=gp./l, whereg is a geometric factor.

To obtain an analytical understanding of the asymptotic
behavior ofd (ty,t), we use the double-exponential form for
f(x) from Eq. (7):

(I)(to,t)zaf:dxex% - "

t0+ t) l/2ey/2

at byx_ e b2X)

(e

We first focus on the integral. In the asymptotic regimet
{arge, we perform a saddle-point expansion to obtain

2T

27T3.2 t1/4

f"(yo)

f(yo)t"?
(t0+ t)1/4e’y/4 !

ur (to+t)l/sey/8

We now assume that the decorrelation process is Poissorhere

nian and the flip rate for the autocorrelation function of a
domain is proportional to the fraction of 0's. Thus, the cor-
responding waiting-time distribution is taken as

w(t>:eXp( g:_)

L
wherer= 74 exp(y), with 79 being the time scale. Using Eq.
(10), we obtain the corresponding autocorrelation function
for a domain of sizé as
2gt)

q).(t):ex;n(——

11

|7 (12

f(y)=—+b
y y 1Y,

o\ 12

Yo (bl) |
A similar expression is obtained fdy, in the saddle-point
approximation wher is large. The asymptotic form for the
autocorrelation function is a stretched exponential, with the
stretching exponent3=1/4 in this regime. The(slow)
stretched-exponential decay results from the convolution of
exponential decays of individual domains with the domain-
size distribution function. For much later times, the primary
contribution tof, is from the bulk domains. In that regime,
our simple arguments above result in an exponential decay
for the autocorrelation function.

(16)

which is the usual exponential decay associated with a Pois- A more accurate calculation of decorrelations arising

sonian process. Finally, we introduce the domain morpholf

ogy through the domain-size distribution functid(l,t),
which we had obtained numerically in Sec. IVB. In the

rom spins in domain interiors involves two waiting-time
distributions, and is outlined in Appendix A. However, as we
said earlier, the parameter values used here effectively elimi-

NCOP case, correlations between domains are negligibleate decorrelations arising from bulk fluctuations. Therefore,
Assuming that domains evolve independently in time, wefor the sake of brevity, we will not describe the requisite

have the overall autocorrelation function

calculation here.
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VI. SUMMARY AND CONCLUSION K.T. is also grateful to S. K. Das and R. Mehrotra for their

Let us conclude this paper with a brief summary and dis-hG|p in debugging program codes.

cussion of our results. We have undertaken a comprehensive
MC simulation of a spin-1 model with constrained dynamics. APPENDIX A: CONTINUOUS-TIME RANDOM WALKS

The Eonstraint has t_t'e form of a selection rde=+1 so In this appendix, we present relevant details of the stan-
that=1—0 and 0~ =1 are the only transitions permitted. yarg continuous-time random walk CTRW formalism. In this
Additionally, the states=0 has an appreciably higher energy method. one introduces the probabiliign,t) that exactlyn
than the states==*1, giving rise to local kinetic barriers. flips of a spins(t) e {—1,+ 1} occur in timet. For the sto-
We have investigated far-from-equilibrium dynamics in this o 4ctic variable(t), whose value at=0 is s,, the probabil-

model—resulting from a rapid quench from a high- ity p(s,t|so) of finding the values at timet is
temperature disorderedparamagnetic state to a low-

temperature state, where the system prefers to be ordered

(ferromagnetit P(sitls) =8, 2, PN +85 g > p(n,b).
We have studied two aspects of domain growth in this neven n odd

problem. First, we considered the domain morphology and

Its evolldon, as_chgracte_nz_ed py the spapal correlatlon.func.-l.he autocorrelation functiof(t) of this stochastic process
tion, the domain-size distribution function, and the time-

dependence of characteristic length scales. Our results der'ﬁc'-glven by

onstrate that local barriers do not add up cooperatively to

give length-scale dependent barriers. The temporal evolution D)= >, > SHP(S,tSe)W(sp), (A2)

is analogous to that for the usual spin-1/2 ferromagnet, with s=*1sp==1

time scales renormalized by the Boltzmann factor resulting , o o )

from the local barrier. Thus, our system is a Class 2 Systeﬁyherew(so) is the initial-state distribution function for the
in the LMV classification schemé22]. A feature of our Stochastic variable. Thus,

present paper is a careful characterization of the domain-size

(A1)

distribution function, which is an important input in the sec- d(t)= E p(n,t)— 2 p(n,t) E SSW(So)
ond part of our paper. n'even n odd so=*1
The second aspect of domain growth investigated by us is
the dynamical behayior of the autpcorrelation function. We = E p(n,t)— E p(n,t), (A3)
have formulated a simple stochastic model based on dichoto- n'even n odd

mic Markov processes to mimic spin dynamics in our model.

Our analytical results predict a stretched-exponential beha\becauss(%:l.

ior over an extended time regime, which is consistent with  The CTRW method computes the probabilitig3,t) in
our numerical results. A similar behavior has also been preterms of the so-called waiting-time distribution function
dicted in the context of equilibrium fluctuations in the or- (t), which has a central role in the physical formulation of
dered state of ferromagnets by Huse and Fidi@] and the process. The functiop(t) is the probability that the spin
Tanget al.[13]. Clearly, the Huse-Fisher argument also ap-does not flip in time, if a flip has occurred at=0. In terms
plies to bulk domains in the nonequilibrium evolution con- of y(t) and its time-derivativaj(t), we can obtain an ex-
sidered here, but these effects have been neglected in thgession forp(n,t):

present discussion. It is straightforward to incorporate the

bulk decorrelations in the framework presented here. Of t th
= [t [t o |
0 0

Cdtyp(t—t,)

course, the resulting contributions to the autocorrelationP(n,t 0

function are translationally invariant in time, unlike the deco-

rrelations arising at the moving interfaces. X[ — d(t—t — Wt —t
At present, we are investigating constrained kinetics in (=9t~ ta- )= -1~ ta2)] -
systems with conserved order parameters, e.g., vacancy- X[ = t(to—t) [ — tho(ty)]

mediated phase separation in binary allf3@]. In that case,
local barriers of the type discussed here are not relevant. —(—1 ”ftdt ftndt ftzdt —t
Nevertheless, a range of interesting behaviors is seen in the =(=1) o Mo Mt 1(t=to)
COP context also, as we will report in detail at a later stage. . . . _
Xip(tn=th— ) p(th-1—th-2) . .. p(ta—t1) ho(ty).
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where,= [gy(t)dt. p(0,t) = (1),
Next, we consider the generating functidiiz,t), defined
as t .
. p(Lb)= jodthﬁ(t—tl)[— do(t) ],
H(z,H)= 20 2"p(n,t). (A6)

t t, _ .
p(20= [t [ "dpt— - gt~ ot

Its Laplace transform,

(2= [ ot D, Ras=0. D [lats [ Cat [ Patgt-tor- it to)

is determined in terms of the Laplace transfoyifs) as

X[ = (ta—t) ][ — tholts)], (A11)
(z—=1D)y(s)

1
H(z,s)= <+ — : (A8)  and so on. From this, the relevant Laplace transforms are
s mySl1-2HzS)(s)] obtained as follows:

Returning to the computation of the autocorrelation func-

tion, we note that its Laplace transform is given by S0 p(,8)= tro(S) + (S) (S) iho(S)
- - L B - n even . . - |
v(= [ dte @)= 3 oo 5 pins) (S B(S)(S) B(S) ol S) + -
(A9) 1
This quantity can be directly obtained by setting —1 in =tho(S) + () 1_-—-¢(S) Yo(s),
H(z,s), yielding the compact expression: P(s)¥(s)
1 24(s) o : B L o
O PRI (A10) 2 P(N,S)= = $(S)iho(S) = A(S)I(S) b(S) dolS)
The above discussion is valid for spins with flip probabil- 1 )
ity independent of the state, e.g., corner spins with equal =—¢(s) mlﬂo(s)- (A12)

numbers of -1 and+1 neighbors. For spins inside bulk do-
mains, it is useful to consider the following generalization of
the above treatment. We introduce two waiting-time distri-
butions due to the fact that, isay an up domain, the time
for flipping from up to down is much longer than from down
to up. For an up domain, let(t) and ¢(t) be the waiting P (s)= E
times for a spin-flip from “up to down” and “down to up,” S
respectively.[For the down domain, the roles @f(t) and

#(t) are reversed We can write the probabilities far flips ~ where 7,= [gdty(t). Note that, if ¢(s)=y(s), P(s) re-

Substituting the above results in the expression for the
autocorrelation function, one obtains the expression

1 2¢(s)i(s)
74S G(S)+ (S)—Sd(S)(s)’

(A13)

in an up domain as follows: duces to our earlier expression in EA10).
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